

RESOURCES FOR "HSC-II MATHEMATICS" ZUEB EXAMINATIONS 2021

@copyright ZUEB

PREFACE:

The ZUEB examination board acknowledges the serious problems encountered by the schools and colleges in smooth execution of the teaching and learning processes due to sudden and prolonged school closures during the covid-19 spread. The board also recognizes the health, psychological and financial issues encountered by students due to the spread of covid-19.

Considering all these problems and issues the ZUEB Board has developed these resources based on the condensed syllabus 2021 to facilitate students in learning the content through quality resource materials.

The schools and students could download these materials from <u>www.zueb.pk</u> to prepare their students for the high quality and standardized ZUEB examinations 2021.

The materials consist of examination syllabus with specific students learning outcomes per topic, Multiple Choice Questions (MCQs) to assess different thinking levels, Constructed Response Questions (CRQs) with possible answers, Extended Response Questions (ERQs) with possible answers and learning materials.

ACADEMIC UNIT ZUEB:

2. Constructed Response Questions (CRQs)

HOW TO ATTEMPT CRQs:

- Write the answer to each Constructed Response Question/ERQs in the space given below it.
- Use black pen/pencil to write the responses. Do not use glue or pin on the paper.

SECTION B (SHORT ANSWER QUESTIONS)

Define each of the following: $i.A \cup \emptyset$ $iv.A \cup A$ $ii.A \cap A$ $v.\emptyset \cap \emptyset$ $iii.A \cap \emptyset$ $v.\emptyset \cap \emptyset$

S. #	CRQ	ANSWER	CL	DL		
EXERCISE 1.1						
1.	Evaluate: a. $\lim_{x \to 2} \frac{x^2 - 5x + 6}{x^2 - 7x + 10}$ b. $\lim_{x \to 0} \frac{\sin 2x}{\sin 3x}$	a. $\frac{1}{3}$ b. $\frac{2}{3}$	K/A	E		

S. #	CRQ	ANSWER	CL	DL	
EXERCISE 1.7					
2.	Find $\lim f(x)$, where		K/A	Μ	
	$f(x) = \frac{3e^{x}-e^{x}-2}{x}$, a=0	4			

S. #	CRQ	ANSWER	CL	DL		
	EXERCISE 2.1					
3.	Show that (-5, 3), (3, 2) and (-1,-4) are the vertices of an isosceles triangle.	PROOF	K/A	Ε		

@copyright ZUEB

4.	The vertices A, B, C of a triangle are (2, 1), (5, 2) and (3, 4) respectively. Find the coordinates of the circum-center and also the radius of the circum-circle of the triangle.	$\left(\frac{13}{4},\frac{9}{4}\right),\frac{5\sqrt{2}}{4}$ units	K/A	Μ	
----	--	---	-----	---	--

S. #	CRQ	ANSWER	CL	DL	
EXERCISE 2.2					
5.	Find the ratio in which the point M		K/A	Ε	
	(0, -1) divides the join of L $(1, 2)$ and N	1: -2			
	(2, 5).				

S. #	CRQ	ANSWER	CL	DL				
	EXERCISE 2.4							
6.	The line through (6, -4) and (-3, 2) is	_	K/A	Μ				
	parallel to the line through (2, 1) and	$y = \frac{7}{2}$						
	(0, y). find y.	3						
7.	Using slopes, find the fourth vertex of		K/A	Μ				
	a parallelogram if (7, -1), (-3, 1) and (-	(5, 3)						
	5, 5) are its three consecutive vertices.							

S #	CRQ	ANSWER	CL	DL		
EXERCISE 2.5						
8.	The angle from the line through (2, 7)		K/A	Ε		
	and (-6, 5) to a line through (1, -4) is	3x+5y+17=0				
	135°. Find the equation of the second					
	line.					

S #	CRQ		ANSWER	CL	DL			
	EXERCISE 3.1							
9.	Find	the equation of each of the		K/A	Μ			
	follow	ving straight lines:						
	i.	Passing through (-1, 2) and	12x+7y-2=0					
		parallel to the line joining the						
		points (-1, 7) and (6, -5)						

S#	CRQ	ANSWER	CL	DL
	EXE	RCISE 3.2		
10.	Find the value of k when the vertices		K/A	Μ
	of the triangle are the points:			
	i. (2, 6), (6, 3) and (4, k) and area	i. K=11.5		
	is 14 square units.	ii. K=1		
	ii. (-5, 3), (-1, -1) and (k, 5) and			
	area is 16 square units.			
11.	Show that the line through the origin	PROOF	K/A	Μ
	making an angle of measure \emptyset with			
	the line y=mx+b.			
	$y m + tan \emptyset$			
	$\overline{x} = \frac{1}{1 - m \tan \phi}$			

S #	CRQ	ANSWER	CL	DL		
	EXERCISE 4.2					
12.	Find the differentiate coefficient of <i>f</i> at		K/A	Μ		
	a given point t in the proper domain	. 3.				
	D(f) of f , where:	tan ^s t				
	$f(t) = \frac{1}{2}tan^2t + \ln\cos t$					

S #	CRQ	ANSWER	CL	DL
	EXERO	CISE 4.3		
13.	If <i>f</i> is a function with $y=f(x)$ given implicitly. Find $\frac{dy}{dx}$, where it exists in the following cases: (where a, b are constants) $\sqrt{x^2 + y^2} = ln(x^2 - y^2)$	$\frac{x}{y} \left[\frac{2\sqrt{x^2 + y^2} - x^2 + y^2}{2\sqrt{x^2 + y^2} + x^2 - y^2} \right]$	K/A	D

S #	CRQ	ANSWER	CL	DL
EXERCISE 4.4				
14.	Find $\frac{dy}{dx}$ when x=ln t +sin t, y=e ^t +cos t where it exists.	$\frac{e1-sint}{\frac{1}{t}+cost}(where cost \neq -\frac{1}{t})$	K/A	E

S#	CRQ	ANSWER	CL	DL			
	EXERCISE 5.3						
15.	Find the maximum and minimum values,		K/A	Ε			
	if any, of the function $f : \mathbb{R} \to \mathbb{R}$ in the	Relative minimum at $x=5$ is -22					
	following cases:	Related maximum at x=1 is 10					
	$f(x) = x^{3} - 9x^{2} + 15x + 3$						

S#	CRQ	ANSWER	CL	DL		
EXERCISE 6.1						
16.	Evaluate the following indefinite		K/A	Μ		
	integrals.	$\frac{1}{4}x^4 - 2x^3 + \frac{11}{2}x^2 - 6x + c$				
	(i) $\int (x-1)(x-2)(x-3)dx$	4 2				

S #	CRQ	ANSWER	CL	DL			
	EXERCISE 6.2						
17.	Evaluate the following integrals (i) $\int \frac{dx}{\sqrt{25-16x^2}}$	$\frac{1}{4}\sin^{-1}\left(\frac{4x}{5}\right) + C$	K/A	Μ			

S#	CRQ	ANSWER	CL	DL		
	EXERCISE 6.3					
18.	Find: i. $\int \frac{dx}{x\sqrt{x^4-1}}$	$\frac{1}{2}sec^{-1}(x^2) + C$	K/A	Μ		

S#	CRQ	ANSWER	CL	DL			
	EXERCISE 6.5						
19.	Evaluate the following definite integrals $\int \frac{dy}{y^2 \sqrt{y^2 - a^2}}$	$\frac{1}{a^2} \frac{\sqrt{y^2 - a^2}}{y} + C$	K/A	E			

S#	CRQ		ANSWER	CL	DL			
	EXERCISE 6.7							
20.	Find the follow	ying indefinite integrals: $\int x \tan^{-1} x dx$	$\frac{x^2}{2}tan^{-1}x - \frac{x}{2} + \frac{1}{2}tan^{-1}x + C$	K/A	Μ			
21.	Calculate the f $\int e^{x} (e^{x}) dx$	following: sin x + cos x) dx	$e^x sinx + C$	K/A	D			

S #	CRQ	ANSWER	CL	DL	
EXERCISE 7.1					
22.	Find the equation of the circle which	$x^2 + y^2 + 10x + 20y + 25 = 0,$	K/A	Μ	
	touches x-axis and passes through the	and			
	points (1, -2) and (3, -4)	$x^2 + y^2 - 6x + 4y + 9 = 0$			

S#	CRQ	ANSWER	CL	DL		
EXERCISE 8.4						
23.	Find the value of c for which the line y-		K/A	Ε		
	x=c will be tangent to the parabola	c=a				
	y ² =4ax					

S #	CRQ	ANSWER	CL	DL			
	EXERCISE 9.5						
24.	Find sin(a, b) for the vector a, b of question 1		K/A	Е			
25.	Find a vector perpendicular to the plane through the points P ₁ , P ₂ , P ₃ for each of the following sets of points: I. P ₁ : (1, 3, 5), P ₂ : (2, -1, 3), P ₃ : (-3, 2, -6) II. P ₁ : (2, 4, 6), P ₂ : (-3, 1, 5), P ₃ : (2, -6, 1) III. P ₁ : (1, 0, 0), P ₂ : (-2, 1, 3), P ₃ : (-1, 1, 1) IV. P ₁ : (2, -1, 2), P ₂ : (0, 0, 0), P ₃ : (-4, 1, -1)	i. $42i - 19j - 17k$ ii. $5i - 25j + 50k$ iii. $-2i - 3j - k$ iv. $i+6j + 2k$	K/A	М			

S#	CRQ	ANSWER	CL	DL	
EXERCISE 9.6					
26.	Simplify:		K/A	Ε	
	i. [a.2b-3c2a+b+c]				
	ii. [-a-b-c . 2b +3c4a +c]				